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Abstract 
The over 40 year old Hartman-Perdok (HP) [Hartman 
& Perdok (1955). Acta Cryst. 8, 49-52, 521-524, 
525-529] theory for predicting crystal morphology is 
reconsidered. The new approach, which gives a physical 
foundation to the theory, is based on F faces having a 
roughening transition temperature higher than 0 K. The 
aim of this paper is to confront the field of crystal growth 
and in particular the classical HP theory with modern 
statistical thermodynamical treatments of models of 
surfaces of relatively simple crystal structures. It is 
shown that crystal faces (hkl) containing multiple 
connected nets with a relatively high energy content 
may have a very low roughening temperature and an 
unexpectedly high growth rate. In some cases, crystal 
faces become rough at OK because of multiple 
connected nets related by symmetry giving rise to 
symmetry roughening. The use of connected nets in the 
HP theory offers the possibility of extrapolating the 
results of statistical thermodynamical models of simple 
crystal surfaces to more complex crystals as encountered 
in practice. The role of the step free energy in 
understanding crystal morphology is emphasized. 

1. Introduction 

In 1951, Burton, Cabrera & Frank published a famous 
paper about the growth of crystals and the equilibrium 
structure of their surfaces. They introduced the spiral 
growth mechanism for imperfect crystals to the already 
known two-dimensional nucleation mechanism for 
perfect-crystal surfaces. Furthermore, they discussed the 
phenomenon of surface roughening using the two- 
dimensional statistical thermodynamical models of 
Onsager (1944). 

A few years later, Hartman & Perdok (1955a,b,c) 
formulated the Hartman-Perdok (HP) theory, also 
known as the periodic bond chain (PBC) theory, for 
deriving the crystal morphology from the crystal struc- 
ture. Hartman & Perdok did not explicitly take the 
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effect of surface phase transitions, like the roughening 
transition, into account. 

Since Onsager (1944), statistical thermodynamical 
surface models have become applicable to more 
complex crystal surfaces and many surface phases like 
the normal fiat, reconstructed fiat, disordered fiat 
(DOF) and rough phase have been found (Leamy & 
Gilmer, 1974; van Beijeren, 1977; Rommelse & den Nijs, 
1987; den Nijs & Rommelse, 1989; Mazzeo et al., 1995). 
Nevertheless, many practically grown crystals are too 
complex to describe with an accurate statistical ther- 
modynamical model. 

In this paper, it will be shown that integration of the 
crystallographic HP theory and statistical thermo- 
dynamical surface models can be used to derive the 
equilibrium and growth morphology qualitatively, and in 
many cases quantitatively, of a very wide range of 
crystals. For this, the F face defined by Hartman & 
Perdok will be redefined as a crystal face having a 
roughening temperature higher than 0 K. F faces can be 
determined from a crystal structure by determination of 
all connected nets. Analysis of all connected nets for a 
single orientation (hkl) in terms of relatively simple 
statistical thermodynamical surface models yields 
information about the equilibrium and the growth 
behaviour of the specific face. It will be shown that 
certain combinations of connected nets cause an unex- 
pectedly high growth rate when the step energy is very 
small. As a special case of the latter, combinations of 
symmetry-related connected nets may result in a zero 
step energy. These situations give rise to symmetry 
roughening. 

The paper is organized as follows. First, a historical 
overview of morphological theories is given in which the 
HP theory and the statistical thermodynamical theory of 
roughening transitions are emphasized. Next, in §3 an F 
face will be redefined and the relation between 
connected nets and statistical thermodynamical models 
of interface roughening will be explained. Symmetry of 
connected nets in the broken-bond description and the 
influence of a mother phase taking the crystal symmetry 
and destruction of symmetry into account will be treated 
in ~4. We end with a Discussion and conclusion. 
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2. History of crystallography and morphology 
2.1. Bravais, Friedel, Donnay and Harker (BFDH) 

The science of crystallography started when Hatiy 
discovered the law of rational indices (Hatiy, 1792). 
From a modern point of view, this law can be stated as 
follows: Faces occurring on crystals are parallel to net 
planes that are perpendicular to a reciprocal-lattice 
vector: 

k ( h k l ) = h a * + k b * + l c * ,  h , k , l ~ Z .  (1) 

Here, a*, b* and c* are the reciprocal-lattice vectors. 
Only the orientation of a face occurring on a crystal is 
relevant. This orientation is adequately described by 
three integers (hkl), which are prime in reference to 
each other. In the period 1880 to 1939, the following law 
of the relative morphological importance of faces (hkl) 
was formulated by Bravais, Friedel, Donnay and Harker 
(this is called nowadays the BFDH law). The larger the 
interplanar distance dhk l, the larger the MI (morpholo- 
gical importance) of (hkl) or 

dh,k,ll > dh2k212 ~ MIh~klll > Mth2k212. (2) 

The MI of a face (hkl) is defined as the relative statistical 
frequency of occurrence of the face (hkl) or the relative 
size of the face (hkl) occurring on a set of crystals of a 
certain compound. According to Bravais and Friedel, 
the values of dhk I ought to be corrected for non-primitive 
cells if these cells are used to calculate dhkl'S (Friedel, 
1911). These corrections may lead to integers h, k and l 
that are mutually non-prime. According to Donnay & 
Harker (1937), dhkl'S need to be corrected for screw axes 
and glide planes of the space group of the crystal 
structure because exactly the same crystal surfaces are 
separated by dnhnknl with n ~ N. An intuitive extension 
of the Donnay-Harker  law was given by Donnay & 
Donnay (1961) for the case that surfaces separated by 
dnhnknl a r e  almost exactly the same. 

In general, dhk I has, at least, to be corrected by the 
crystallographic selection rules as given in International 
Tables for X-ray Crystallography (1969). For a treatment 
of the BFDH law, see Hartman (1973, 1978). In order to 
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Fig. 1. Schematic drawing of a PBC with an overall translation [100] 
consisting of growth units A[000], B[001], D[001], C[001] and 
A[100]. The DC[100] consists of A[000], B[001], C[001] and A[100]. 
The chemical composition of the crystal is A BCD. Note that growth 
unit D is not needed to connect A[000] with A[100]. 

get an impression of how crystal (growth) forms look, 
according to the BFDH law, the ad hoc assumption may 
be introduced that the relative growth rate Rhk ! of faces 
(hkl) is inversely proportional to dhkl or proportional to 
k = Ikhgll. Plotting vectors with a length R = IRhktl from 
an origin and erecting faces (hkl) perpendicular to the 
vectors Rhk l, a crystal form is obtained. Using this so- 
called Wulff construction (Wulff, 1901), crystal forms are 
obtained, which are dominated by faces (hkl) with the 
highest dhkt and thus the smallest Ikhktl. If the space 
group and elementary cell of a given structure are 
known, all dhk ! values can be calculated and crystal 
forms can be constructed. 

2.2. Hartman-Perdok theory 

The BFDH law often gives a satisfactory description 
of the morphology of crystals. There are, however, 
striking discrepancies between predicted and observed 
morphologies. The drawback of the BFDH law is its 
purely geometrical character. Neither the real crystal 
structure nor the concept of chemical bond and statis- 
tical thermodynamics of interfaces or crystal-growth 
mechanisms are taken into account. In 1955, Hartman & 
Perdok published three papers, which can be considered 
as a breakthrough in the theory of morphology, a 
subscience of crystal growth theory (Hartman & Perdok, 
1955a,b,c). In the original HP theory, the concept of 
periodic bond chain (PBC) plays a key role. A PBC is an 
uninterrupted chain of bonds representing strong 
interactions between growth units with an overall peri- 
odicity [uvw] -- ua + vb + we (u, v, w ~ Z) of the direct 
primitive lattice and contains no other lattice transla- 
tion. Moreover, a PBC is stoichiometric with regard to 
the unit-cell contents. In the classical HP theory, three 
types of faces were distinguished: 

F faces parallel to at least two non-parallel inter- 
secting PBCs 

S faces parallel to only one PBC 
K faces not parallel to any PBC. 

Owing to the periodicity of the structure, two PBCs 
constituting an F face determine the composition of an F 
slice parallel to (hkl). 

Strom has developed a computer program for auto- 
matic derivation of F slices. She has shown that it is 
conceptually more simple and computationally more 
straightforward to derive the F slices by determining and 
combining direct chains (DCs) instead of PBCs (Strom, 
1985). A direct chain is defined as a sequence of strongly 
bonded growth units of which only the end points are 
identical (i.e. related by a lattice translation) (Strom, 
1980). In contrast to PBCs, DCs need not be stoichio- 
metric with regard to the chemical composition of the 
crystal (see Fig. 1). Note that each PBC consists of at 
least one DC and that a stoichiometric DC is also a PBC. 

F slices can be considered as growth layers or surface 
configurations. In order to determine which surface 
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conf igura t ion will be most  p r o n o u n c e d  on the growth  
form in the absence of external factors, often the slice 
energy values associated with the various F slices in 
(hkl) are calculated. 

Within the framework of the HP theory, it is assumed 
[and this can be justified (Hartman & Bennema, 1980)] 
that the rate of growth Rhk ! of a face (hkl) increases with 
the attachment energy. This implies that for two faces 
(hlkll l)  and (hzkzlz) the following relation holds: 

Eat t  itTatt hlklt~ I > "-'h2k2t21---* Rh,k~t, > Rh2k2t 2. (3) 

Quite often, in order to get an impression of the habit of 
crystals, the ad hoc assumption is introduced that Rhk t is 

]tTatt proportional to "-'hkl or 

f , ~ a t t  Rhkt = "-"-'hkt" (4) 

Here C is a constant. ]tzatt is defined as the energy L-, hk I 
released per growth unit when a complete growth layer 
is attached to a surface (hkl). It is complementary to 
~lice ~att  and ~-~lice together give the crystallization k l "  L"hkl ~ 'hkl  
energy E ~r or 

E c r  itTatt /;-slice = "~hkt + "-'hk~ • (5) 

It follows that crystals will be, in principle, bounded 
by F slices having the lowest R h k  ! o r  the lowest jTatt "-'hktl and 
the highest I ~ 1  (Hartman & Perdok, 1955a,b,c; 
Hartman & Bennema, 1980; Hartman, 1973, 1987). 
Faces (hkl) with the highest I Phl~e I will also have in most 
cases the largest dhk t. This explains the success of the 
BFDH law (Hartman, 1978). The HP theory has been 
applied with great success to numerous crystalline 
structures both organic and inorganic (Hartman, 1987; 
Bennema & van der Eerden, 1987; Bennema, 1993). The 
theory was extended to ionic crystals and Madelung and 
Ewald methods were used to calculate ]tTatt and ]L--slice L.,hk I a-.,hk I 
(Hartman, 1987; Bennema & van der Eerden, 1987; 
Woensdregt, 1990; Strom & Hartman, 1989). 

2.3. Equilibrium forms and growth forms 

The theory of equilibrium forms, firmly rooted in 
thermodynamics, leads to a logical recipe to construct an 
equilibrium form. This recipe is given by (Wulff, 1901; 
Herring, 1953) 

D h k  I --- A O ' h k l ,  (6) 

where Dhk I is the distance from the origin of the coor- 
dinate system to the face (hkl). It is proportional to the 
surface free energy tyro, t (A is a constant) of the face. An 
equilibrium form can be obtained using the Wulff 
construction. A review on equilibrium forms is given by 
Kern (1987). 

In order to obtain growth forms, in equation (6), trhk l 
has to be replaced by the relative growth ra tes  Rhk I. 
Expressions for Rhk I may be given by Rhk I (2((dhkl) -1, 
R h k  ! (3( Ea t  t o r  more sophisticated expressions derived 

from the modelled fluid part of the interface and kinetic 
crystal growth models (Liu et al., 1995a,b). 

The spread in growth rates of experimentally 
observed crystals even of symmetrically equivalent faces 
(of one form {hkl}) may be very high owing to different 
growth histories of different faces caused by different 
dislocations, hydrodynamics or absorption of impurities. 

2.4. Theory o f  roughening transition 

In the 1950s, Burton, Cabrera & Frank described the 
transition of fiat crystal faces at equilibrium to rough- 
ened faces as a function of temperature (Burton et al., 
1951). At that time, an exact calculation of the rough- 
ening transition was restricted to a rectangular two- 
dimensional lattice with equal or different interactions 
in the two crystallographic directions (Onsager, 1944). 
The allowed height differences in this model were 
IAhl -4- 1 (unit cell). For this model, the step free energy 
decreases linearly with increasing temperature T and 
vanishes at T -  T c, the transition temperature. This 
type of surface transition is known as the Ising transi- 
tion. 

The theory of roughening transitions was developed 
further in the 1970s by Kosterlitz & Thouless (1973, 
1974), Leamy & Gilmer (1974), van Beijeren (1977), 
Swendsen (1978), Miiller-Krumbhaar (1978) and 
Shugard et al. (1978). For these models, the height 
differences Ah were not restricted to IAhl + 1. It was 
shown that the cubic faces of a simple cubic solid-on- 
solid (SOS) model and the body-centred solid-on-solid 
(BCSOS) model show a roughening transition of infinite 
order, which is characterized by a critical (dimension- 
less) temperature O~k t such that 

0 < 0~k t ~ Yhk/ > 0 
(7) 

0 ~_~ ORkl ~ Yhkl - -  O, 

where Yhk/ represents the step free energy of a step 
on the face (hkl). The dimensionless roughening 
temperature for a face (hkl) is defined by 

0Rkl R -- 2k T~kt/~str, (8) 

where (])st r represents an arbitrary reference bond which 
in this case is the strongest bond of the crystal and the 
factor 2 is conventional. T~Rkt is the absolute roughening 
temperature of the face (hkl). It was shown that for 
these models the step free energy y vanishes continu- 
ously as 

y "" exp[-t~(T R - T)-1/2], T <_ T R, (9) 

where T is the actual temperature and ct is a coefficient 
depending on the system. In general, the roughening 
temperature T R is somewhat higher than the Ising 
transition temperature T c. 

The bond energies at the interface have within the 
framework of cell models the shape (Bennema & van 
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der Eerden, 1987; Bennema, 1993, 1996) 

~i  = ~ f  -- 1-tobY's2 ,--, + tiff), (10) 

where s f  refers to a solid-fluid bond, ss to a solid-solid 
bond and f f  to a fluid-fluid bond. Fluid means, here, 
any mother phase, including a very dilute vapour. ~i  
corresponds to the broken-bond energy of the ith bond 
of the crystal. 

As shown above, the concept of roughening transition 
was derived for simple crystals like the simple cubic SOS 
and BCSOS models. For real crystal faces simplified to 
somewhat more complex Kossel-like structures, van der 
Eerden (1976), Rijpkema et al. (1982) showed that the 
two-dimensional Ising transition temperature TCkt may 
be used as an (usually lower bound) estimate for the 
roughening temperature T~k t. 

We note that during the past ten years a lot of effort 
has been put into understanding complex interface 
models from a statistical thermodynamical point of view. 
Rommelse and den Nijs found a pre-roughening tran- 
sition to a so-called disordered fiat (DOF) phase with 
next-nearest-neighbour interactions (Rommelse & den 
Nijs, 1987; den Nijs & Rommelse, 1989). Mazzeo et al. 
(1995) calculated a phase diagram for the two-compo- 
nent BCSOS model. The latter phase diagram, which is 
applicable to caesium chloride type structures, exhibits 
flat, reconstructed flat, disordered fiat and rough phases. 

The implication of the roughening transition for 
crystal faces (hkl) is that these faces will, in essence, 
remain fiat in thermodynamic equilibrium at a 
temperature below the roughening temperature. Even if 
this surface is exposed to a driving force for crystal- 
lization, the surface will grow by a layer mechanism 
(two-dimensional nucleation or spiral growth) keeping 
in principle the orientation (hkl). Note that a crystal face 
may become rough below the roughening temperature 
because of a high driving force. This phenomenon is 
known as kinetic roughening (Elwenspoek & van der 
Eerden, 1987; Jetten et al., 1984). If in equilibrium the 
surface has a temperature above its roughening 
temperature, it will no longer keep its orientation (hkl) 
and, in the case of growth, it will grow as a macro- 
scopically rounded-off surface without orientation (hkl). 
This is because the step free energy has become zero. 

It has been shown by Prestipino et al. (1995) 
that the disordered fiat phase may have major 
implications for the growth behaviour of crystal 
faces. 

3. Derivation of F faces based on crystallography and 
the concept of roughening 

In this section, a new definition for an F face will be 
given based on the concept of roughening. Using a 

model crystal graph, it will be shown that specific 
combinations of connected nets result in very low or 
even zero step energy. This may have major implications 
for the equilibrium and growth behaviour of a crystal 
face (hkl). 

3.1. Definition o f  an F face 
In the HP theory, the definition of an F face still 

includes faces that, despite the presence of two inter- 
secting non-parallel PBCs, have a roughening tempera- 
ture of 0 K. In order to include such cases, we will use a 
definition of an F face based on the theory of rough- 
ening transition. An F face (hkl) is defined as a crystal 
face (hkl) with a roughening temperature larger than 
0 K (T~k, > 0 K). 

van Beijeren & Nolden (1986) have shown that a flat 
face (i.e. a crystal face below the roughening tempera- 
ture) with normal k has the property that for all crys- 
tallographic directions u = ua + vb + wc labelled by 
[uvw] (u ,v ,  w E Z )  coplanar with the face (i.e. 
u • k = 0), the sum of the step free energies of a step in 
the u and - u  directions is larger than zero, or 

y ( u ) + y ( - - u ) > 0  Vu, u - k - - 0 .  (11) 

If one wants to predict and understand crystal 
morphology and crystal growth, one has to determine all 
F faces (i.e. crystal faces with T t~ > 0) from the crystal 
structure. As argued before, it is almost impossible for 
practical crystals to determine all these faces on the 
basis of statistical thermodynamic models. A convenient 
solution to this problem is to derive all connected nets of 
a crystal structure and subsequently analyse these on the 
basis of relatively simple statistical thermodynamic 
models. 

A connected net is defined as the combination of at 
least two intersecting non-parallel direct chains (DCs). 
Equivalent connected nets are separated by the inter- 
planar distance dhk/ according to the BFDH law. This is 
the distance that separates physically identical surfaces. 
All equivalent growth units in all DCs constituting a 
connected net differ by a translation u perpendicular to 
k. This is called the flatness criterion. 

Note that there is a difference between a connected 
net and an F slice defined earlier by Strom. She defined 
an F slice as the combination of at least two intersecting 
non-parallel PBCs (Strom & Heijnen, 1981). All 
equivalent growth units in all PBCs constituting an F 
slice differ by a translation u perpendicular to k (flatness 
criterion). The definition implies that the F slices are 
stoichiometric with respect to the chemical composition 
of the unit cell. In contrast, connected nets need not be 
stoichiometric. A further difference between the HP 
theory and the present approach is that Hartman (1973) 
does not allow polar F slices for centrosymmetric crys- 
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tals whereas polar connected nets are allowed in the 
present analysis. 

For the determination of connected nets from a 
crystal structure, it is convenient to reduce growth units 
in the crystal lattice to their geometrical centres (or 
centres of gravity if preferred) and represent strong 
interactions between the growth units by bonds between 
these centres. In this way, an infinite set of points 
connected with bonds to each other is formed. Inspired 
by graph theory, we define this as the crystal graph. It 
must be emphasized that in general the crystal graph has 
a higher symmetry than the corresponding crystal. In all 
cases, the actual space-group symmetry of the crystal has 
to be considered. 

The proposed model crystal graph is presented in Fig. 
2. Note that for clarity we have drawn more than the 
unit cell. The crystal graph consists of two types of 
growth units A and B, which are indicated by their 
centres of gravity. The stoichiometry of the crystal is AB. 
Growth u~its A are situated at the corners and growth 
units B in the centre of the elementary cell. Note that 
the actual positions of the growth units in the crystal can 
have a lower symmetry. Between growth units A and B 
bonds c and d are present. In the [100] and [010] 
directions, two neighbouring growth units A are 
connected to each other by the bonds a. In the same way, 
two adjacent growth units B are connected by bonds b in 
the [100] and [010] directions. 

In the discussion of different types of F faces, 
different crystal graphs will be derived from the model 

~.;'," " , " -L  i..." 
, ~ ~ -. k t ' 

a 

. . . . . . .  • b 
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. . . . . .  d 
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* B  

E 

7 

Fig. 2. Basic model crystal graph. The b bond is present in both the 
lit)()] (not drawn) and [010] directions. 

crystal graph in Fig. 2 by redefining the a, b, c and d 
bonds and growth units A and B. 

3.2. Discussion of  connected nets and F faces 

In the following, some properties of F faces and 
connected nets will be explained and illustrated using 
the model crystal graph depicted in Fig. 2. 

For simplicity, all bond energies used in the analysis 
are so-called broken-bond energies, which are defined as 
the energy needed to break the bond between the 
growth units. Thus, per growth unit, the broken-bond 
energy is half the bond energy of the bond between two 
growth units. In the following, step energies will be 
calculated on the basis of these broken bonds. There- 
fore, step energies instead of step free energies are used. 
Such an approach can still be used to determine whether 
a face is an F face as the entropy contribution to the free 
energy is zero at 0 K. 

The broken-bond energies of the bonds a, b, c and d 
will be indicated by ~a,  ~b, ~<. and ~d, respectively. It is 
assumed that there are no other interactions in the 
crystal lattice apart from the bonds defined in the crystal 
graph. The effect of long-range interactions, surface 
relaxations, polarity and crystal-mother-phase interac- 
tions will be ignored at this stage but will be discussed in 
§4. 

3.2.1. Illustration o f  the BFDH law for connected nets. 
Consider the crystal graph of Fig. 2 with b -- a, d -- c 
and B = A. The [100] projection of the (001) face is 
shown in Fig. 3. The unit cell is an /-centred cell. 
Application of the BFDH law will result in a halving of 
the interplanar distance separating exactly equivalent 
surfaces. In that case, there is a single connected net 
(002) presented in Fig. 3. The step energy for the 
orientation (001) can be calculated comparing the 
surface energies of a fiat surface bounded by af ly  with 
the surface energy of a surface with a step bounded by 
otfl3e. Counting the broken bonds results in a step 
energy of ~, .  This illustrates the law of Bravais and 
Friedel for non-primitive cells. The general BFDH law is 
illustrated by the same figure if it were the crystal graph 
of the crystal of Fig. 2 with space-group symmetry P112~. 

e 

a/-- 

I (002) 

Fig. 3. [100] projection of the (001) face of the crystal graph of Fig. 2 
with b - - a ,  d - - -c  and B = A. The indicated step along [010] is 
equivalent to a step along [100]. 

. "  - -  - - " - -  - -  - -  - / "  - - - * ' -  - - " 9 " -  

~ "~" "O 
b 

Fig. 4. [100] projection of the crystal graph of Fig. 2 without a and b. 
The indicated step along [010] is equivalent to a step along [100]. 
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Under growth conditions (A/x > 0), this type of crystal 
face will grow with layers of thickness doo2 at a 
temperature below the roughening temperature 
(T < T r) and at a low driving force not causing kinetic 
roughening. 

3.2.2. Multiple connected nets. Consider the (001) face 
of the crystal graph in Fig. 2 with ~a -- ~b -- 0. In this 
case, two different connected nets (001)1 and (001)2 are 
present as indicated in Fig. 4. The step energy can be 
calculated by taking the difference in surface energy for 
(001)l between the surface bounded by afly and the 
surface bounded by uflSe as equal to the difference in 
bond energy 2(~ d - ~ c ) -  As a result, the roughening 
temperature for the F face (001) is larger than 0 K. At 
equilibrium conditions, the face would be fiat and 
bounded by the surface with the lowest surface energy. If 
the c bond is stronger than the d bond, the surface would 
be bounded by the A growth units. Under growth 
conditions (A/z > 0) at a temperature T < T R, the 
surface would then grow with layers (001)2. 

In Fig. 5, the [100] projection of the (001) face of the 
model crystal graph of Fig. 2 is drawn, now including all 
bonds. For this orientation, four-connected nets indi- 
cated by (001)1, (001)2 ,  ( 001 )3  and ( 0 0 1 ) 4  c a n  be found. 
The connected nets (001)1 and (001)2 each consist of the 
two connected n e t s  (001 )3  and (001)4 .  If (001)1 repre- 
sents the preferred surface configuration, the step 
energy can be calculated, as shown before, by calcula- 
tion of the surface-energy difference between interfaces 
c~r~F and otflSe. In this case, the step energy is equal to 
( 2 ~ d  - -  2~c) + ~a + 4~b" 

For growth below the roughening temperature, the 
crystal will grow layer by layer preferring the lowest 
energy surface at the interface. Assuming that ~c < ~d, 
the crystal will grow with layers (001)1. Under certain 
conditions, it is more favourable to grow effectively with 
half layers by alternating layers (001)3 and (001)4. The 
growth behaviour of faces containing multiple 
connected nets will be the subject of a future paper 
(Grimbergen, Bennema & Meekes, 1998). 

3.2.3. Symmetry roughening. We now consider a 
limiting case of the (001) face as presented in Fig. 4 for 
which ~ -- ~b -- 0 and c -- d. Note that still growth 
unit A differs from growth unit B. A [100] projection of 
the crystal graph is shown in Fig. 6. Again, two different 
connected nets can be distinguished, indicated by (001)1 

I ,°°,,. 

b 

Fig. 5. [100] projection of the (001) face of the crystal graph of Fig. 2. 
The indicated step along [010] is equivalent to a step along [100]. 

and (001)2. The topology of the two connected nets is 
identical but the difference is that for (001)1 B growth 
units while for (001)2 A growth units are at the surface. 
In Fig. 6, it can be seen that, starting from a surface with 
B on top, the difference in broken-bond energy of a fiat 
surface bounded by ot/3y and a surface with one step 
bounded by ot~3e is equal to zero resulting in a zero step 
energy. This implies that this face would be rough at 0 K 
(T R -- 0). The same holds if one starts with the A growth 
units on top. This special situation will be referred to as 
symmetry roughening. Symmetry roughening will be 
treated extensively in a forthcoming paper (Meekes et 
al. , 1998). 

If the unit cell is an / -cent red  cell and consequently 
A -- B, there would not be a valid connected net for the 
face (001). This is trivial because the layer thickness d0o~ 
would become do02 according to the crystallographic 
BFDH law and there are no connected nets (002) (see 
Fig. 6). The consequence is that the face would be rough 
at T = 0 K and thus not be a valid F face. This has also 
been found for the body-centred solid-on-solid 
(BCSOS) model. For the BCSOS model without next- 
nearest-neighbour interactions, the roughening 
temperature of the (001) face is 0 K (van Beijeren, 
1977). 

3.2.4. Illustration of equation (11). In some specific 
cases, the step energy for a step in a direction u may not 
be equivalent to a step in the opposite direction - u .  This 
is illustrated in Fig. 7. The c and d bonds have been 
divided into q ,  c2, dl and d2 bonds. 

Two connected nets can be distinguished indicated 
with (001)1 and (001)2. Calculation of the step 
energy for the step oq3F3 on the (001)1 face yields 
(2~d2--2@c2 ) and for the step xeSy (2¢ 'dl- -2~c,  ). 
Assuming that (@,:, + ~c2) < (~d, + ~d2), different 
situations may occur: 

(¢,., > % , )  A (¢c~ < %2); 
(¢',. < % , )  A (¢'c2 > ,:I:,,~). 

In the first case, both step energies are positive. In the 
second situation, the step energy for the step otfly8 is 
positive while the step energy for the step xeSy is 
negative! The third situation corresponds to the reverse. 
In all situations mentioned, relation (11) holds. There- 

E . . . . . . . .  

(OOl) I 

b 

Fig. 6. [100] projection of the (001) face of the crystal graph of Fig. 2 
with a = b ---- 0 and c = d. A step along [100] is equivalent to the 
indicated step [010]. 
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fore, the face is a genuine F face having a roughening 
temperature larger than 0 K. Obviously, the face would 
become rough when (~c~ + ~ c 2 ) = ( ~ <  +~d2)" If 
(~"1 +~c2)  > (~dl + ~d2), the (001)2 connected net 
would give the surface configuration with the lowest 
surface energy. 

3.3. Disordered flat faces 

For some time, interface models were based on first- 
nearest-neighbour bonds and it has been shown that 
some specific models like the SOS, RSOS and BCSOS 
models (Leamy & Gilmer, 1974; van Beijeren, 1977; 
Swendsen, 1978; Mtiller-Krumbhaar, 1978; Shugard 
et al., 1978) show a roughening transition. Later, 
Rommelse and den Nijs found a new phase of crystal 
surfaces, a so-called disordered flat (DOF) phase by 
taking next-nearest-neighbour interactions into account 
(Rommelse & den Nijs, 1987; den Nijs & Rommelse, 
1989). In their model, this phase occurs intermediate 
between the fiat and the rough phases of a crystal face. 

In our description of crystal faces based on connected 
nets, the DOF phase can also be identified. This can 
be illustrated looking at Fig. 8. If the bonds c and d 
are considered as first-nearest-neighbour solid-on-solid 
bonds and the a and b next-nearest-neighbour bonds are 
not equivalent (~a :fi ~h), this model is identical to the 
staggered BCSOS model described by Mazzeo et al. 
(1995) for which the phase diagram is known and a 
disordered fiat phase has been identified. Apart from the 
connected nets (001)1 and (001)2, two connected nets 
(001)3 and (001)4 can be identified. Of the latter two 
connected nets, each has its own two-dimensional Ising 
transition temperature TCl, and T. c respectively. In 

. 0 0 1 4  ' 

Fig. 8, it can be seen that the step energy for this crystal 
face is (~a + ~h) independent of whether connected net 
(001)1 or connected net (001)2 is chosen as surface 
configuration. This is a consequence of the broken-bond 
description. Thus, the crystal face will have a roughening 
temperature higher than 0 K. 

At temperatures lower than the Ising temperatures of 
the two individual connected nets (001)3 and (001)4, the 
surface will be flat. For the moment it will be assumed 
that ~a > ~h and consequently TC0013 < T'C0m4" When the 
temperature becomes higher than the two-dimensional 
Ising temperature of the (001)3 connected net 
[(T > TCl~) A (T < T,~n~) ], the crystal face will show an 

Ising transition to a DOF phase. Consequently, the 
crystal face will be essentially flat because of the 
connected net (001)4 with the highest Ising temperature. 
However, the (001)3 connected net will not be ordered 
any more. When the temperature is increased further 
( T >  T. R t~n,), one would expect the crystal face to show a 
roughening transition from the DOF phase to a rough 
phase. However, it was proven for the two-component 
BCSOS model that there is no roughening transition and 
the crystal face will stay in the DOF phase as long as 
~a ~ ~b (Mazzeo et al., 1995). This behaviour may be 
due to the strict BCSOS condition of the model (van 
Beijeren & Nolden, 1986). For real crystals, such types of 
faces will probably have a roughening transition at 
higher temperatures. 

The implication for crystal morphology is that fiat and 
DOF phases will result in well defined flat crystal facets 
on a macroscopic scale, while a rough face would be 
observed as a macroscopically rounded-off face. 
Futhermore, a DOF phase may result in anomalous 
growth behaviour compared with a normal flat face. 
Prestipino et al. (1995) have shown for the FCSOS 
model, using Monte Carlo simulations, that exactly at 
the pre-roughening temperature the crystal face grows 
continuously and has a very high growth rate, whereas 
just above and below this critical temperature the crystal 
grows layer by layer and the growth rate is lower. 

3.4. Reconstructed flat faces 

The connected-net analysis is principally based on 
attractive bonds. If strong repulsive interactions are 
added to the crystal graph, the situation may occur that 
energetically a reconstructed face, having a larger 
surface periodicity, is favoured. An example is the (001) 
face of the caesium chloride structure. This crystal face 
has been modelled using the two-component BCSOS 
model with repulsive next-nearest-neighbour interac- 
tions (Mazzeo et al., 1995). They find a c2×2 recon- 
structed fiat phase for the (001) face. 

In our model graph, this situation corresponds to 
repulsive a and b bonds and SOS bonds c and d. The 
resulting c2x2 reconstruction can be derived from a 
connected net analysis when the flatness criterion (see 
§3.1) is suspended. Then, the connected net as depicted 
in Fig. 9 is a valid connected net. Note that the c and d 
bonds are drawn although the bond energies are similar. 

c I , , / "  
Y "  "'" "Z-  ' "'" "'-,o--" ' "'" ' "'" 

Fig. 7. [100] projection of the (001) face of the 
crystal graph of Fig. 2 with bonds cl, c2, dl, d 2 
and a = b = 0. Steps along [100] and [010] 
are equivalent. 
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The connected net shown has a symmetry-related 
connected net translated over [100]. These two 
connected nets do not cause symmetry roughening 
because there is a step energy to go from one connected 
net to the symmetry-equivalent one. The step energy 
corresponds in this case to the formation of a domain 
wall between the two reconstructed surface configura- 
tions and implies the formation of a repulsive a bond. 

It is interesting that, depending on the ratio of the 
bond energies, the crystal face will behave differently 
when the temperature is increased. This can be seen in 
the phase diagram for this model in Mazzeo et al. (1995). 
It is shown that, for some specific ratio of bond energies 
~ , , /~b ,  the crystal surface is reconstructed fiat at low 
temperature, rough at higher temperatures and will 
become disordered fiat at very high temperatures. This 
implies that the crystal face becomes fiat at high 
temperatures instead of rough! Mazzeo et al. (1995) 
refer to this situation as an inverse roughening transi- 
tion. 

4. Symmetry of connected nets 

4.1. Broken-bond description 

A connected-net analysis of a crystal structure often 
yields a series of connected nets for a single orientation 
(hkl) which may also be interpreted as a number of 
different surface configurations. We will denote a 
connected net by knhkt, where the superscript n labels the 
different connected nets for the orientation (hkl) having 
a normal khk t with Ikhktl - -  1 / d h k  t. When a crystal has the 
lowest possible symmetry P1, all the connected nets are 
unique surface configurations but for crystals with 
higher symmetry connected nets may be related by 
symmetry. 

In general, a symmetry operator R i of the space group 
of the crystal transforms a connected net k in itself or in 
another connected net k' with a different orientation. In 
the discussion of symmetry-related connected nets for a 
crystal face (hkl), we will consider all symmetry 
elements that conserve the orientation. Then two 
different situations may occur: k' = k and k' = - k .  The 
latter situation we will call boundary swapping. Note 
that boundary swapping gives rise to a pair of connected 
nets with opposite surfaces. 

. . . . .  ¢ ~  £ . . . . . . . .  

b 

....... b 
- - ¢  

Fig. 8. [100] projection of the (001) face of the crystal graph of Fig. 2 
with d = c. Steps along [100] and [010] are equivalent. 

An example of boundary swapping is shown in Fig. 6. 
If the space-group symmetry of the graph in Fig. 2 is 
Pmmm, the (001)l and the (001)2 connected nets would 
be related by symmetry elements causing k ' = - k .  
Based on broken bonds, the surface energies of the two 
connected nets are equal and the step energy for the 
face is zero. Because of the symmetry, this face will have 
a roughening temperature of 0 K. This type of rough- 
ening we have called symmetry roughening. 

It will be shown in a forthcoming paper that a thor- 
ough analysis of symmetry relations between connected 
nets yields the already known BFDH selection rules 
and, complementary to those, conditions at which 
symmetry roughening can occur (Meekes et al., 1998). 

4.2. Influence o f  a mother phase 

The connected-net analysis is essentially based on 
bonds between growth units defined in the bulk crystal 
lattice. Furthermore, the assumption is made that the 
positions of growth units at an interface are exactly the 
same as their positions in the bulk crystal. In this section, 
we consider the situation beyond the broken-bond 
description, including the effect of a mother phase, 
relaxation and reconstruction very briefly. 

Taking the possibility of surface reconstruction into 
account, the original HP theory has to be reconsidered 
somewhat. This was realised by Har tman (1989) and Sun 
et al. (1990) for corundum, hematite and YBa2Cu307_x. 
Including surface reconstruction implies either allowing 
a larger periodicity at the surface compared with the 
bulk or relaxing the flatness criterion when one sticks to 
the periodicity of the bulk lattice. 

In the case of surface relaxation, the mesh a r e a  Mhk I is 
not changed with respect to the unrelaxed bulk struc- 
ture. Then the following symmetry elements will be 
conserved at the crystal-mother-phase interface: 

all n-fold rotation axes parallel to k; 
all mirror planes and glide planes parallel to k with a 

glide component pependicular to k. 

II tit 

. . . . . . .  b 

b 

Fig. 9. [001] project ion (top view) of one  of the two (001) connec ted  

nets violating the flatness criterion. Black dots: B growth units; grey 
dots: A growth units  at z = 0; white dots: A growth units  at z = 1. 

~c = ~d" 
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In the case of reconstruction, more symmetry elements 
will be lost, depending on the actual reconstruction. It 
can be concluded that the symmetry elements causing 
boundary swapping are lost at the interface. This implies 
that faces containing symmetry-related connected nets 
giving rise to boundary swapping and symmetry rough- 
ening will formally not roughen at 0 K. In Fig. 6, it can be 
observed that the two alternative connected nets have 
either A growth units or B growth units at the interface. 
In the broken-bond description, this situation results in 
equivalent surface energies but it is obvious that these 
two surfaces will have different surface free energies. 
However, the free-energy difference might be very small 
and then the crystal face will become rough even at very 
low temperatures. 

In general, the interaction of a mother phase with the 
crystal face may either increase or decrease the surface 
free energy and the step free energy for a crystal face 
(hkl). This is due to adsorbed solvent molecules, the 
presence of complexes or a preordering effect of the 
mother phase just at the interface, in any case the effect 
can be very complex. Nevertheless, we will assume that 
the effect of a mother phase only influences bond 
energies as long as there is no reconstruction. Relaxa- 
tion as argued before nevertheless can destroy some 
symmetry elements. 

Therefore, in general, the effect of a mother phase can 
change the relevant parameters for crystal growth, 
namely the attachment energy, the step free energy and 
consequently the roughening temperature. Calculations 
of the effect of a solvent on the crystal morphology have 
been performed by several authors; see for example 
Berkovitch-Yellin (1985), van der Voort (1991a,b) and 
Liu et al. (1995a). 

5. Discussion and conclusion 

The present definition of an F face originates from the 
idea to integrate the statistical thermodynamical 
theories of surface phase transitions and the classical 
Hartman-Perdok theory for derivation of crystal 
morphology from the crystal structure. It is very 
important to bring these disciplines of science together 
in order to improve the understanding of the behaviour 
of crystals either in thermodynamic equilibrium with 
their mother phase or under growth conditions. 

Statistical thermodynamical surface models have 
become more and more applicable to complex crystals 
and have revealed many surface phases like the normal 
flat, reconstructed flat, disordered flat (DOF) and rough 
phases. These phases will influence not only the equili- 
brium but also the growth morphology of crystals. 

These models have to be generalized in order to be 
applicable to a wider range of experimental crystal 
structures. In this paper, we have shown that, by deri- 

vation and subsequent analysis of all connected nets of a 
crystal structure, the surface phases found by the more 
sophisticated statistical thermodynamical models can be 
identified qualitatively. 

Analysis of combinations of connected nets is the key 
in understanding equilibrium and growth behaviour of 
more complex crystal faces. In the classical HP theory, 
the slice energy and attachment energy are the most 
important parameters for the description of the 
morphology. In our opinion, both the step free energy 
and the attachment energy are key parameters for 
understanding the equilibrium and growth behaviour of 
crystal faces. We have shown that step energies of a 
crystal face (hkl) can become very small for specific 
combinations of connected nets even in the case of very 
high slice energies. In such cases, the roughening 
temperature of the crystal face can be much lower than 
expected on the basis of calculated Ising transition 
temperatures of individual connected nets. Moreover, 
the growth rate for this type of face will be high even at 
low driving forces owing to a low two-dimensional 
nucleation barrier. This is in contrast with the usual 
assumption that the growth rate depends on the 
attachment energy only. 

For small step free energies in a single direction [uvw] 
of a Kossel-like crystal, it has been shown by Burton et 
al. (1951) that the roughening transition temperature is 
very low. Consequently, such crystal faces will become 
rough even at low driving forces. Such an anisotropy can 
be amplified drastically by pairs of connected nets giving 
rise to very low step free energies for which the slice 
energies can still be very high. Crystal faces having a 
very low step free energy in a single direction [uvw] and 
at the same time high slice energies have been found for 
triacylglyceride and paraffin crystals (Grimbergen, 
Hollander et al., 1998; van Hoof et al., 1998). 

Equation (11) implies that crystal faces having a step 
free energy of zero in a single direction [uvw] are 
already rough at 0 K. In this special case of symmetry 
roughening, the step energy for a crystal face (hkl) is 
zero despite the presence of connected nets containing 
very strong bonds. The roughening temperature of such 
faces is 0 K and the growth rate will be very high. An 
example of symmetry roughening is found for naph- 
thalene and anthracene crystals (Grimbergen, Reedijk, 
Meekes & Bennema, 1998). A complete overview of 
symmetry relations between connected nets can be 
found in Meekes et al. (1998). 

Note that in the analysis of the connected nets 
calculated energies are not free energies. The statistical 
thermodynamical models show that the entropic 
contribution is essential for exact calculation of the 
roughening transition temperatures and the presence of 
different types of surface phases. It is a challenge for the 
future to develop generally applicable methods for 
calculation of step free energies and surface free ener- 
gies of crystal surfaces in contact with a mother phase. 
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In a for thcoming paper,  the growth behaviour  of 
crystal faces containing multiple connected nets will 
be studied using the connected net analysis and 
Monte  Carlo (MC) simulation techniques (Grimbergen,  
Bennema & Meekes, 1998). The effect of anisotropy in 
the growth layer will be studied in detail on the basis of 
the connected nets. A combinat ion of a connected net 
analysis and subsequent  MC crystal growth simulations 
offers the possibility of predicting crystal morphology as 
a function of driving force. 
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support  from the Dutch Organizat ion of Technical 
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